

## Agri-tech Services (UK) Ltd

# Precision Irrigation "hitting the target"





## Soil less Growing







## Objective

- Think about your irrigation system
- Identify the areas of weakness
- Where if anywhere does further investment need making
- Come up with two clear plans of action to take back to your farm





## **Typical system layout**







### Water source



| Parameter               | Maximum level mg/l | ppm  |
|-------------------------|--------------------|------|
| Electrical Conductivity | 850 ms/cm          |      |
| Sodium                  | 35 mg/l            | 35   |
| Chloride                | 52 mg/l            | 52   |
| Iron                    | 1.0 g/l            | 1    |
| Zinc                    | 0.35 mg/l          | 0.35 |
| Boron                   | 0.33 mg/l          | 0.33 |
| Sulphate                | 144 mg/l           | 144  |
| Sulphate                | 144 mg/l           | 144  |

Ensure water is extracted as close to the surface as possible over the deepest area of the Res / Dam

Source; defra - ADAS



## RO – Reverse Osmosis



1.Water containing impurities enters the system2.Impurities are stopped and rejected at the membrane surface3.Water pressure forces water molecules through the membrane4.The purified water is then sent directly to the holding tank5.Impurities are expelled from the system



## Pumps



Backup pump essential in the event of breakdown

Similarly balanced pumps - pumps "like to be working"

Ability to fluctuate pumps useful





## **Primary Filtration**



Life span of the drippers completely determined by what is pushed through them







## **Primary Filtration**







## Secondary filtration







## Secondary filtration





## Partially blocked drippers – the cost??





## Irrigation Uniformity



Need to determine appropriate "Shot Length" for good distribution of water and feed within the pot / bag / trough

Changing weather will determine number of shots per day NOT length of shots





## Pressure test points







### Catch can tests







## Moisture Uniformity



Rigid pots less likely to tilt / tip – better moisture distribution



## Moisture Uniformity



Bags sitting level on gutter

## www.agri-tech.co.uk



Bags un-level Bag wetter in middle



## Laser levelled





## Laser levelled???



Note :Every 10 meter drop in height equals a gain in pressure of 1 bar ( 1 bar = 14.5 psi)



## **RTK GPS Precision**



Setting up RTK Base Station



In-field mapping



## Field Mapping – Irrigation block design



Displayed: Sub-main Tunnel layout Irrigation blocks Topography map TNL plan





## **DNL** Placement







## **DNL** Positioning



**GPS Mapping Services** 

**TNL** Positioning

A Farme

Strawberry Farm

| ۵. | n |   | 2 | ni | d | h | 0 |
|----|---|---|---|----|---|---|---|
| ~  |   | • | ^ | 1  | u | У | c |

| Block 1 | TN | Dist | Dist | Dist | Dist | Block 3 contd | TN | Dist | Dist | Dist | Dist |
|---------|----|------|------|------|------|---------------|----|------|------|------|------|
|         | 1  | 22   | 44   |      |      |               | 19 | 36   |      |      |      |
|         | 2  | 20   | 42   | 62   | 80   |               | 20 | 27   |      |      |      |
|         | 3  | 21   | 42   | 64   | 91   |               | 21 | 36   |      |      |      |
|         | 4  | 23   | 49   | 71   | 95   |               | 22 | 33   |      |      |      |
|         | 5  | 23   | 51   | 73   | 95   |               | 23 | 30   |      |      |      |
|         | 6  | 27   | 54   | 76   | 97   |               | 24 | 34   |      |      |      |
|         | 7  | 27   | 55   | 83   |      |               | 25 | 35   |      |      |      |
|         | 8  | 24   | 54   | 86   |      |               |    |      |      |      |      |
|         | 9  | 20   | 52   | 85   |      | Block 4       | TN | Dist | Dist | Dist | Dist |
|         | 10 | 20   | 52   | 85   |      |               | 11 | 13   | 37   |      |      |
|         | 11 | 16   | 58   |      |      |               | 12 | 14   | 35   | 63   |      |
|         |    |      |      |      | _    |               | 13 | 17   | 40   |      |      |
| Block 2 | TN | Dist | Dist | Dist | Dist |               | 14 | 22   | 50   |      |      |
|         | 1  | 34   | 57   | 84   |      |               | 15 | 22   | 56   |      |      |
|         | 2  | 29   | 52   | 83   |      |               | 16 | 29   |      |      |      |
|         | 3  | 31   | 56   | 76   |      |               | 17 | 28   | 61   |      |      |
|         | 4  | 43   | 84   |      |      |               | 18 | 26   | 63   |      |      |
|         | 5  | 33   | 79   |      |      |               | 19 | 31   |      |      |      |
|         | 6  | 38   | 70   |      |      |               | 20 | 36   |      |      |      |
|         | 7  | 32   | 59   | 91   |      |               | 21 | 39   |      |      |      |
|         | 8  | 30   | 58   |      |      |               | 22 | 31   | 62   |      |      |
|         | 9  | 16   | 44   | 76   |      |               | 23 | 32   |      |      |      |
|         | 10 | 21   | 43   | 79   |      |               | 24 | 31   | 59   |      |      |
|         | 11 | 15   | 40   | 74   |      |               | 25 | 30   | 59   |      |      |
|         |    |      |      |      |      |               |    |      |      |      |      |

Detailed plan with exact measurements for Irrigation team

Ensures TNL's follow contours

Eliminate the "guesswork"

Increase irrigation system efficiency

Reduce in field variation of moisture and nutrients





## WET readings and run-off





## Wet readings EC and drain



What is the moisture range within the pots / bags Is the control (probe) in a representative area What does the EC value mean – e.g what is making up the EC?? Is it made up of the "Good guys" or the "bad guys"??



How many drain readings per day 24 hr average maybe useful but does not indicate trends through the day Max run to coincide with max temp / plant water demand Run down to zero before nightfall





#### Weekly record sheet – Moisture EC and drain

| WET pro    | be / Rur        | n-off r           | ecords             |              |               |                    |                     |              | <                  |                    |                 |
|------------|-----------------|-------------------|--------------------|--------------|---------------|--------------------|---------------------|--------------|--------------------|--------------------|-----------------|
| Field Name | 7 DAY READING   |                   |                    |              |               |                    |                     |              |                    | SENTI              | E <b>C - PR</b> |
| DATE       | WEATHER         | INPUT EC<br>FIELD | TIME OF<br>READING | Probe Area % | Probe Area EC | AVERAGE<br>Field % | AVERAGE<br>Field EC | Run-off<br>% | TARGET<br>MOISTURE | TARGET<br>EC FIELD | COMN            |
| 16/02/2015 | Cool / overcast | 1.5               | 07:30 - 07:35      | 66.2         | 2.8           | 64.3               | 2.4                 | 15%          | 60-75              | 2.0-3.0            | 1               |
| 17/02/2015 |                 | 1.5               |                    |              |               |                    |                     |              | 60-75              | 2.0-3.0            |                 |
| 18/02/2015 |                 | 1.5               |                    |              |               |                    |                     |              | 60-75              | 2.0-3.0            |                 |
| 19/02/2015 |                 | 1.5               |                    |              |               |                    |                     |              | 60-75              | 2.0-3.0            |                 |
| 20/02/2015 |                 | 1.5               |                    |              |               |                    |                     |              | 60-75              | 2.0-3.0            |                 |
| 21/02/2015 |                 | 1.5               |                    |              |               |                    |                     |              | 60-75              | 2.0-3.0            |                 |
| 22/02/2015 |                 | 1.5               |                    |              |               |                    |                     |              | 60-75              | 2.0-3.0            |                 |





## Substrate analysis

- Target guidelines for the macro nutrients
- Target guidelines for the micro nutrients
- Max acceptable levels of Na, CI etc
- Plot the analysis against the target similar to moisture.
- We need to identify the trends
- We need to learn what the plant uses and when





## Run-off and Moisture targets

|                         | Coir Substrate    |                 |                        |
|-------------------------|-------------------|-----------------|------------------------|
|                         | Sun Rise          | Day             | Sun Set                |
| <b>Moisture Content</b> | 50-55%            | 60-70%          | 50-60%                 |
| New bags / pots         | 40 – 45%          | 50 - 60%        | 45 – 50%               |
|                         |                   |                 |                        |
|                         | Run-off low<br>ET | Run-off high ET | Run-off flush<br>event |
|                         | 0 - 10%           | 10 – 20%        | > 20%                  |
|                         |                   |                 |                        |

Weather will have the largest influence on Irrigation requirements NB This will determine number of hits NOT length of hits





### Control – Moisture and Run-off station







## Run-off sensor



24hr Run-off readings useful but little indication as to when the run-off has occurred

Automatic run-off sensor indicates when run-off events take place

Aim for run-off from 10:00 through to 13:00

Need coir to dry back in the afternoon to hit the "green zone" on the moisture graphs by night

Avoid wet bags / pots during the overnight period



## Not too wet at night?







## Quality issues





## Graph Illustrating time of run-off events





## **Tunnel Climate and plant water demand**







#### Hourly water use and ET (mm)





## **Controlled Deficit Irrigation**



Moisture targets differ depending on plant growth stage – manipulate the crop with "precise moisture control"



## **Precision Irrigation**

- Enables irrigation team to react to changing weather conditions
- "Watch your plants wake up in the morning and go to sleep at night" essential for precision irrigation decisions



 Manipulate the plant by "Controlled Deficit Irrigation"



## The Essential steps to Precision Irrigation in Substrate cropping;

- Have your substrate site GPS surveyed Using RTK GPS precision our surveying service can create a "detailed picture of your site" together with essential topographic data
- Surveyed data will assist irrigation team / designer correctly spec the irrigation system
- Once the irrigation is installed ensure DNL devices are placed correctly within blocks to prevent drain down essential for even distribution of water and fertiliser
- Use hand held moisture meter (WET probe) to determine variation and field averages
- Strategic positioning of Agri-tech Continual Monitoring probes will feed live moisture data 24/7 directly to your PC or SMART device





#### Tunnel Climate and plant water demand

| TE | MP |      | RELATIVE HUMIDITY |     |     |      |      |      |      |      |      |      |       |      |      |
|----|----|------|-------------------|-----|-----|------|------|------|------|------|------|------|-------|------|------|
| С  | F  | 100% | 95%               | 90% | 85% | 80%  | 75%  | 70%  | 65%  | 60%  | 55%  | 50%  | 45%   | 40%  | 35%  |
| 15 | 59 | 0.0  | 0.8               | 1.7 | 2.5 | 3.4  | 4.2  | 5.1  | 5.9  | 6.8  | 7.6  | 8.5  | 9.4   | 10.2 | 11.1 |
| 16 | 61 | 0.0  | 0.9               | 1.8 | 2.8 | 3.7  | 4.6  | 5.5  | 6.4  | 7.3  | 8.2  | 9.1  | 10.0  | 10.9 | 11.8 |
| 17 | 63 | 0.0  | 1.0               | 2.0 | 2.9 | 3.9  | 4.9  | 5.8  | 6.8  | 7.8  | 8.8  | 9.7  | 10.6  | 11.6 | 12.6 |
| 18 | 64 | 0.0  | o n               | um  | C   | 4.1  | 5.1  | 6.2  | 7.2  | 8.2  | 9.3  | 10.3 | 11.3  | 12.4 | 13.4 |
| 19 | 66 | 0.0  | 11                | 2.2 | 3.3 | 4.4  | 5.5  | 6.6  | 7.7  | 8.8  | 9.9  | 11.0 | 12.1  | 13.2 | 14.3 |
| 20 | 68 | 0.0  | 1.2               | 2.4 | 3.5 | 4.7  | 5.9  | 70   | tim  | hur  | 0.6  | 11.7 | 12.8  | 14.0 | 15.2 |
| 21 | 70 | 0.0  | 1.2               | 2.4 | 3.7 | 4.9  | 6.2  | 7.4  | 8.6  | 9.9  | 11.1 | 12.4 | 13.7  | 14.9 | 16.1 |
| 22 | 72 | 0.0  | 1.3               | 2.6 | 3.9 | 5.3  | 6.6  | 7.9  | 9.2  | 10.5 | 11.9 | 13.2 | 14.5  | 15.8 | 17.2 |
| 23 | 73 | 0.0  | 1.4               | 2.8 | 4.2 | 5.6  | 7.0  | 8.5  | 9.9  | 11.3 | 12.7 | 14.1 | 15.4  | 16.8 | 18.2 |
| 24 | 75 | 0.0  | 1.5               | 3.0 | 4.5 | 5.9  | 7.4  | 8.9  | 10.4 | 11.9 | 13.4 | 14.9 | 16.4  | 17.9 | 19.4 |
| 25 | 77 | 0.0  | 1.6               | 3.2 | 4.8 | 6.4  | 8.0  | 9.5  | 11.1 | 12.7 | 14.3 | 15.9 | 17.4  | 19.0 | 20.5 |
| 26 | 79 | 0.0  | 1.7               | 3.4 | 5.1 | 6.7  | 8.4  | 10.1 | 11.8 | 13.4 | 15.1 | 60(  | )18øľ | 70.1 | 21.8 |
| 27 | 81 | 0.0  | 1.8               | 3.5 | 5.3 | 7.1  | 8.9  | 10.7 | 12.4 | 14.2 | 16.0 | 17.8 | 19.6  | 21.3 | 23.1 |
| 28 | 82 | 0.0  | 1.9               | 3.8 | 5.7 | 7.6  | 9.5  | 11.4 | 13.3 | 15.1 | 17.0 | 18.9 | 20.7  | 22.6 | 24.5 |
| 29 | 84 | 0.0  | 2.0               | 4.0 | 6.0 | 8.0  | 10.0 | 12.0 | 14.0 | 16.0 | 18.0 | 20.0 | 22.1  | 24.1 | 26.1 |
| 30 | 86 | 0.0  | 2.1               | 4.2 | 6.4 | 8.5  | 10.6 | 12.7 | 14.8 | 17.0 | 19.1 | 21.2 | 23.3  | 25.4 | 27.5 |
| 31 | 88 | 0.0  | 2.2               | 4.5 | 6.7 | 9.0  | 11.2 | 13.4 | 15.7 | 17.9 | 20.2 | 22.4 | 24.6  | 26.9 | 29.1 |
| 32 | 90 | 0.0  | 2.4               | 4.7 | 7.1 | 9.5  | 11.9 | 14.2 | 16.6 | 19.0 | 21.3 | 23.7 | 26.1  | 28.4 | 30.8 |
| 33 | 91 | 0.0  | 2.5               | 5.0 | 7.5 | 10.0 | 12.5 | 15.0 | 17.6 | 20.1 | 22.6 | 25.1 | 27.6  | 30.1 | 32.6 |
| 34 | 93 | 0.0  | 2.7               | 5.3 | 8.0 | 10.6 | 13.3 | 15.9 | 18.6 | 21.2 | 23.9 | 26.5 | 29.2  | 31.8 | 34.5 |
| 35 | 95 | 0.0  | 2.8               | 5.6 | 8.4 | 11.2 | 14.0 | 16.8 | 19.6 | 22.4 | 25.2 | 28.0 | 30.8  | 33.6 | 36.4 |











## Agri-tech Services (UK) Ltd

# Precision Irrigation "hitting the target"







## Soil

Soil is the "factory" for crop production – therefore beneficial to understand what is happening within the "factory"





## Soil and water

- Where is the plant using water?
- How much water is my plant using?
- How much do I need to apply and when?
- When I irrigate where is the water going?



## Freely available water





## Field capacity & Refill

Ffull point and refill points defined on a time graph.



Cell expansion and cell division accelerated the nearer to field capacity the soil is. A lettuce grower sells vegetation – to speed growth the SMD is kept close to FC – irrigation regime could be holding the SMD between 5 and 15

To slow down vegetative growth dry soil out – slows growth.



## Field Capacity and Refill point

#### **Field Capacity**

- The maximum moisture content a soil can hold once through drainage of excess water has ceased
- Like pulling a saturated sponge from a bath of water when the sponge stops dripping it is at the Full Point or Field Capacity – it's holding all it can against gravity

#### **Refill Point**

- The point beyond which optimum uptake of water and growth starts to slow down
- Moisture being used at a lower depth in the soil profile
- Will **NOT** always be the irrigation trigger point



## **Moisture Parameters**





## Hitting the Target – rootzone ?





## Soil augering



Grade your soil to establish problems / variation

| D =        | Dry          |
|------------|--------------|
| DM =       | Dry to moist |
| M =        | Moist        |
| MW =       | Moist to wet |
| <b>W</b> = | Wet          |



## **Example Moisture map**



| Dry          |
|--------------|
| Dry to moist |
| Moist        |
| Moist to wet |
|              |

**W** =

Wet





## Leaks create hygiene issues



Unwanted water must be removed





## Soil texture

| Name of soil<br>separate | Diameter limits (mm)<br>(USDA classification) |
|--------------------------|-----------------------------------------------|
| Clay                     | less than 0.002                               |
| Silt                     | 0.002-0.05                                    |
| Very fine sand           | 0.05-0.10                                     |
| Fine sand                | 0.10-0.25                                     |
| Medium sand              | 0.25-0.50                                     |
| Coarse sand              | 0.50-1.00                                     |
| Very coarse<br>sand      | 1.00-2.00                                     |

Clay – feels sticky when wet (plasticine)

Silt – feels "smooth and silky" to the feel

Sand feels gritty – stains your hands when wet





## Soil structure

Built up by the aggregation of textural particles – influenced by:

- Organic matter
- Fauna (Earthworms etc)
- Wetting and drying from rainfall / irrigation
- Freezing and thawing
- Root pressure (crop roots can act as a soil aerator)
- Tillage practices
- Traffic







## Tillage operations / Farm traffic and their influence on structure







## How do we calculate depth applied?



Soil texture and structure will have an impact on the wetting pattern of the dripper

```
Volume (m3) = Depth (mm) * Area (Ha) * 10
```

We want to apply 12mm to a 1.5 ha block of fruit the calculation is 12\* 1.5 \* 10 = 180 m3

We want to apply 12mm to a strawberry bed 100m in length with a wetted zone 60cm wide  $0.1 \times 0.06 = 0.006$  of a ha  $- 12 \times 0.006 \times 10 = 0.72$  m3 or 720 litres



## Irrigation requirement calculator

Irrigation requirement calculator

EDWU = estimated daily water use

NB Block size = tunnelled area





| Block Name | Date   | Bk size (ha) | Bed area<br>Factor | Irrigated area | Plant<br>population<br>(/ha) | Start Meter<br>reading | Target SMD | Actual SMD | EDWU | MM<br>required<br>(week) | Planned KL<br>(m3) / week | Planned Itrs<br>/ plant /<br>week | Target end<br>meter reading | Actual end<br>meter reading | Actual Itrs /<br>plant / week | Actual<br>irrigation<br>applied (mm) |
|------------|--------|--------------|--------------------|----------------|------------------------------|------------------------|------------|------------|------|--------------------------|---------------------------|-----------------------------------|-----------------------------|-----------------------------|-------------------------------|--------------------------------------|
|            |        |              |                    |                |                              |                        |            |            |      |                          |                           |                                   |                             |                             |                               |                                      |
| Block 1    | 21-Jul | 1            | 0.65               | 0.65           | 54000                        | 1000                   | 13         | 18         | 4.5  | 36.5                     | 237.25                    | 4.39                              | 1237.25                     | 1194.67                     | 3.61                          | 29.95                                |
| Block 2    | 21-Jul | 0.85         | 0.7                | 0.595          | 55000                        | 1000                   | 10         | 8          | 2.6  | 16.2                     | 96.39                     | 1.75                              | 1096.39                     | 1103.45                     | 1.88                          | 17.39                                |
| Block 3    | 21-Jul | 1.3          | 0.7                | 0.91           | 55000                        | 1000                   | 10         | 7          | 2.8  | 16.6                     | 151.06                    | 2.75                              | 1151.06                     | 1162.34                     | 2.95                          | 17.84                                |
| Block 4    | 21-Jul | 1            | 0.7                | 0.7            | 55000                        | 1000                   | 25         | 16         | 5    | 26                       | 182                       | 3.31                              | 1182                        | 1176                        | 3.20                          | 25.14                                |
| Block 5    | 21-Jul | 0.9          | 0.7                | 0.63           | 55000                        | 1000                   | 25         | 29         | 6.5  | 49.5                     | 311.85                    | 5.67                              | 1311.85                     | 1320.45                     | 5.83                          | 50.87                                |
| Block 6    | 21-Jul | 1            | 0.7                | 0.7            | 55000                        | 1000                   | 25         | 22         | 3    | 18                       | 126                       | 2.29                              | 1126                        | 1355                        | 6.45                          | 50.71                                |
| Block 7    | 21-Jul | 0.6          | 0.7                | 0.42           | 55000                        | 1000                   | 15         | 25         | 2.5  | 27.5                     | 115.5                     | 2.10                              | 1115.5                      | 1163                        | 2.96                          | 38.81                                |



## Water Meter - reading



#### Mechanical meter recording in cubic meters (m<sup>3</sup>)



Meter Reading: 123.456 ML or 123 456.765 KL



## What changes have we made?

- Introduced RTK to our mapping service enabling laser precision to our surveys
- Added ability to record run-off as and when it happens to the probe system
- Introduced ½ hr updates to the probe data giving near "real-time" data to the end user

### Future

- Measuring UV evaluate poly degradation
- Ability to record imagery remote camera



## What we can offer?

- Strategic overview of your irrigation system
- Offer advice on where investment should be made on system upgrades
- Site Surveys for design
- Irrigation advice based on strategic positioning of soil moisture monitoring probes
- Weekly consultation through the key growing season



## What we need from you

- Irrigation system details
- Weekly WET probe readings and run-off data substrate production
- Weekly soil maps (soil grown crops)
- Weekly images from all sites Dropbox
- Scheduled weekly meetings on farm / via Skype
- The motivation and desire to be the best at what you do

